
14.04.2024 23:29 1/6 Undo

MI Wiki - https://wiki.mi.uni-r.de/

Undo

Interaction Techniques and Technologies (ITT), SS 2017
Session 20 (18.07.2017), Raphael Wimmer

Overview

These are slides/notes for the lecture, automatically generated from the slide set. Please extend this
outline with your own notes.

Overview

Undo
History
User Interfaces
Implementations

partially based on slides by Brad Myers
Undo: History and Models

Undo

Questions:

What is undo?
How does the user interface for undo look like?
How can undo functionality be implemented?

History

First documented use: Bravo text editor (Xerox Alto), 1974 (user manual)

http://www.cs.cmu.edu/~bam/uicourse/05440inter/lecture21.Undo.pptx
http://www.history-computer.com/Library/AltoUsersHandbook.pdf
https://wiki.mi.uni-r.de/_detail/lehre/ss17/itt/img/alto_undo.jpg?id=lehre%3Ass17%3Aitt%3Aundo

Last update: 12.02.2018 15:41 lehre:ss17:itt:undo https://wiki.mi.uni-r.de/lehre/ss17/itt/undo

https://wiki.mi.uni-r.de/ Printed on 14.04.2024 23:29

Shortcuts

NY Times (quoted by Wikipedia) says shortcut ^Z was selected „by programmers at the
research center Xerox PARC“

http://www.nytimes.com/2009/09/20/magazine/20FOB-onlanguage-t.html
Larry Tesler says that is incorrect: the Ctrl-CXVZ shortcuts were implemented first for the
Apple Lisa (1983).

Redo shortcut
^Y in Macintosh
^-SHIFT-Z in some other systems

Design Issue: how big a unit to undo?
Often typing coalesced into a single operation
Multiple backspaces may or may not be
Newer: “intelligent” single operations may be divided into multiple undoable operations
E.g., Auto-correct in Word

<small>(source: Brad Myers' slide set)</small>

Linear Multi-Level Undo Model

All operations are in a history list
Can undo backwards

Undone operations are put into a redo list
Can then redo forwards
But once a new command is executed, anything in the redo list is discarded, so there is always
only a linear history
May have a limited size of the history list
Almost all of today’s applications support restricted linear undo model

<small>(source: Brad Myers)</small>

Important details

Which commands are designed to be undoable, which not?
mostly undoable: modify text, delete objects
mostly not undoable: save file, select text, send e-mail

How are commands handled which are not undoable?
exclude from undo stack

What happens to clipboard contents?
leave clipboard unaffected from all undo operations

Preserving the complete command history

Problem: undo followed by other operations overwrites part of the linear undo stack
Emacs text editor: undo operations are appended to the undo stack similar to normal operations

very confusing for new users

http://www.nytimes.com/2009/09/20/magazine/20FOB-onlanguage-t.html

14.04.2024 23:29 3/6 Undo

MI Wiki - https://wiki.mi.uni-r.de/

Vim text editor: undo branches (move along main branch with u and Ctrl-R, move
chronologically through all branches via g- and g+)

also offers 'persistent' undo by storing all operations in an undofile

Selective undo

Let the user select which operation(s) to undo while leaving later operations intact
„Script“ model – pretend the operation never happened

Can undo all operations to that point, remove the command, then redo all the subsequent
commands
„Rewrite history“
But what if it was a “create” and later operations were “change color”?

Not allowed to selectively undo the create?
Or later operations are ignored?
Not always clear what the user would want

Can also support “insert” operation into history
If I create an object in the past, do future operations include it?

„Inverse“ Model: add inverse operation to end of history
e.g., „change color from red to blue“ → „change color from blue to red“
see Thomas Berlage. 1994. A selective undo mechanism for graphical user interfaces
based on command objects. ACM Trans. Comput.-Hum. Interact. 1, 3 (September 1994),
269-294

<small>(source: Brad Myers)</small>

Multi-user undo

Multiple users editing at the same time
When user A undoes something, what does it mean?

Local: That person’s last operation?
Global: Globally the last operation?

Abowd proposes global when there is a single cursor (or single selection), but local if multiple
cursors (selections)
Local undo requires some form of selective undo
Can interfere with the other user’s current edits
see Gregory D. Abowd and Alan J. Dix. 1992. Giving undo attention. Interact. Comput. 4, 3
(December 1992), 317-34290021-7)

<small>(source: Brad Myers)</small>

Practical Implementations

Implementation 1: Memento Pattern

http://doi.acm.org/10.1145/196699.196721
http://doi.acm.org/10.1145/196699.196721
http://doi.acm.org/10.1145/196699.196721
http://dx.doi.org/10.1016/0953-5438(92
http://dx.doi.org/10.1016/0953-5438(92

Last update: 12.02.2018 15:41 lehre:ss17:itt:undo https://wiki.mi.uni-r.de/lehre/ss17/itt/undo

https://wiki.mi.uni-r.de/ Printed on 14.04.2024 23:29

remember each state
General idea:

an originator object has some internal state
it can produce a memento object that represents its internal state
a caretaker object applies an undo-able action to the originator by asking for a
memento object of the current state and only then applying the action
to undo the action, the memento object is given to the originator

* see also: (Wikipedia article)

Implementation 2: Command Pattern

remember each operation
General idea:

every action is encapsulated in a command object
the command object has specific do() and undo() methods
to apply an action, do() is called, to revert it, undo() is called
an undo stack organizes the sequence of commands

similar: diff and patch utilities for code development
see also: (Wikipedia article)
see also: undo branches, e.g. in vim

Qt Implementation

Qt's Undo framework implements the Command pattern.
QUndoCommand (undo-able actions implemented as subclasses)

undo() - undoes the action
redo() - executes / redoes the action

QUndoStack (maintains list of actions that can be undone)
push(command) - adds to stack and calls command.redo()
undo() - pops last command from stack and calls command.undo()

QUndoGroup (route undo()/redo() to QUndoStacks for multiple opened documents)
QUndoView (widget that shows a QUndoStack)
also: facilities for undoing multiple related actions at once

Qt Undo Example (1/2)

~~~~ undo.py
#!/usr/bin/env python3
from PyQt5.QtWidgets import QUndoCommand, QUndoStack, QUndoGroup

class SimpleDocument(object):
    def __init__(self, text=None):
        if text is None:
            self.text = ""
        else:

https://en.wikipedia.org/wiki/Memento_pattern
https://en.wikipedia.org/wiki/Command_pattern
http://vim.wikia.com/wiki/Using_undo_branches
http://doc.qt.io/qt-5/qundo.html


14.04.2024 23:29 5/6 Undo

MI Wiki - https://wiki.mi.uni-r.de/

            self.text = text

class InsertCharacter(QUndoCommand):
    def __init__(self, document, position, character):
        super().__init__()
        self.document = document
        self.character = character
        self.position = position
        self.setText("insert a character")
    def undo(self):
        self.document.text = self.document.text[:self.position] \
                           + self.document.text[self.position+1:]
    def redo(self):
        self.document.text = self.document.text[:self.position] \
                           + self.character \
                           + self.document.text[self.position:]
~~~~

Qt Undo Example (2/2)

~~~~ undo.py

if __name__ == "__main__":
    stack = QUndoStack()
    d = SimpleDocument("123456")
    stack.push(InsertCharacter(d, 1, "a"))
    # "1a23456"
    stack.push(InsertCharacter(d, 3, "b"))
    # "1a2b3456"
    stack.undo()
    stack.undo()
    # "123456"
~~~~

Recap

Undo is an essential interaction technique in modern user interfaces.
When should one use the Memento pattern, when the Command pattern?
Qt: command pattern
see also: C# examples for Command and Memento Pattern

ENDE

http://www.codeproject.com/Articles/33371/Multilevel-Undo-and-Redo-Implementation-in-C-Part

Last update: 12.02.2018 15:41 lehre:ss17:itt:undo https://wiki.mi.uni-r.de/lehre/ss17/itt/undo

https://wiki.mi.uni-r.de/ Printed on 14.04.2024 23:29

From:
https://wiki.mi.uni-r.de/ - MI Wiki

Permanent link:
https://wiki.mi.uni-r.de/lehre/ss17/itt/undo

Last update: 12.02.2018 15:41

https://wiki.mi.uni-r.de/
https://wiki.mi.uni-r.de/lehre/ss17/itt/undo

	Undo
	Overview
	Overview
	Undo
	History
	Shortcuts
	Linear Multi-Level Undo Model
	Important details
	Preserving the complete command history
	Selective undo
	Multi-user undo

	Practical Implementations
	Implementation 1: Memento Pattern
	Implementation 2: Command Pattern
	Qt Implementation
	Qt Undo Example (1/2)
	Qt Undo Example (2/2)
	Recap

	ENDE

