30.04.2024 04:50 1/6 Undo

Undo

Interaction Techniques and Technologies (ITT), SS 2017
Session 20 (18.07.2017), Raphael Wimmer

Overview

These are slides/notes for the lecture, automatically generated from the slide set. Please extend this
outline with your own notes.

Overview

e Undo
o History
o User Interfaces
o Implementations
e partially based on slides by Brad Myers
Undo: History and Models

Undo

Questions:

e What is undo?
* How does the user interface for undo look like?
e How can undo functionality be implemented?

History

First documented use: Bravo text editor (Xerox Alto), 1974 (user manual)

]

Shortcuts

e NY Times (quoted by Wikipedia) says shortcut ~Z was selected ,by programmers at the
research center Xerox PARC*
o http://www.nytimes.com/2009/09/20/magazine/20FOB-onlanguage-t.html
o Larry Tesler says that is incorrect: the Ctrl-CXVZ shortcuts were implemented first for the
Apple Lisa (1983).

MI Wiki - https://wiki.mi.ur.de/

http://www.cs.cmu.edu/~bam/uicourse/05440inter/lecture21.Undo.pptx
http://www.history-computer.com/Library/AltoUsersHandbook.pdf
https://wiki.mi.ur.de/_detail/img/alto_undo.jpg?id=lehre%3Ass17%3Aitt%3Aundo
http://www.nytimes.com/2009/09/20/magazine/20FOB-onlanguage-t.html

Last update: 12.02.2018 15:39 lehre:ss17:itt:undo https://wiki.mi.ur.de/lehre/ss17/itt/undo?rev=1518449949

e Redo shortcut
o ~Y in Macintosh
o ”~-SHIFT-Z in some other systems
e Design Issue: how big a unit to undo?
o Often typing coalesced into a single operation
o Multiple backspaces may or may not be
o Newer: “intelligent” single operations may be divided into multiple undoable operations
o E.g., Auto-correct in Word

<small>(source: Brad Myers' slide set)</small>

Linear Multi-Level Undo Model

¢ All operations are in a history list
e Can undo backwards
o Undone operations are put into a redo list
e Can then redo forwards
e But once a new command is executed, anything in the redo list is discarded, so there is always
only a linear history
e May have a limited size of the history list
» Almost all of today’s applications support restricted linear undo model

<small>(source: Brad Myers)</small>

Important details

e Which commands are designed to be undoable, which not?

o mostly undoable: modify text, delete objects

o mostly not undoable: save file, select text, send e-mail
e How are commands handled which are not undoable?

o exclude from undo stack
e What happens to clipboard contents?

o leave clipboard unaffected from all undo operations

Preserving the complete command history

e Problem: undo followed by other operations overwrites part of the linear undo stack
e Emacs text editor: undo operations are appended to the undo stack similar to normal operations
o very confusing for new users
¢ Vim text editor: undo branches (move along main branch with u and Ctrl-R, move
chronologically through all branches via g- and g+)
o also offers 'persistent' undo by storing all operations in an undofile

https://wiki.mi.ur.de/ Printed on 30.04.2024 04:50

30.04.2024 04:50 3/6 Undo

Selective undo

e Let the user select which operation(s) to undo while leaving later operations intact
e ,Script” model - pretend the operation never happened
o Can undo all operations to that point, remove the command, then redo all the subsequent
commands
o ,Rewrite history”
o But what if it was a “create” and later operations were “change color”?
= Not allowed to selectively undo the create?
= Or later operations are ignored?
= Not always clear what the user would want
o Can also support “insert” operation into history
= If | create an object in the past, do future operations include it?
¢ Inverse” Model: add inverse operation to end of history
o e.g., ,change color from red to blue“ - ,change color from blue to red”
o see Thomas Berlage. 1994. A selective undo mechanism for graphical user interfaces
based on command objects. ACM Trans. Comput.-Hum. Interact. 1, 3 (September 1994),
269-294

<small>(source: Brad Myers)</small>

Multi-user undo

e Multiple users editing at the same time
e When user A undoes something, what does it mean?
o Local: That person’s last operation?
o Global: Globally the last operation?
e Abowd proposes global when there is a single cursor (or single selection), but local if multiple
cursors (selections)
e Local undo requires some form of selective undo
e Can interfere with the other user’s current edits
e see Gregory D. Abowd and Alan J. Dix. 1992. Giving undo attention. Interact. Comput. 4, 3
(December 1992), 317-34290021-7)

<small>(source: Brad Myers)</small>

Practical Implementations

Implementation 1: Memento Pattern

e remember each state
¢ General idea:
o an originator object has some internal state
o it can produce a memento object that represents its internal state
o a caretaker object applies an undo-able action to the originator by asking for a

MI Wiki - https://wiki.mi.ur.de/

http://doi.acm.org/10.1145/196699.196721
http://doi.acm.org/10.1145/196699.196721
http://doi.acm.org/10.1145/196699.196721
http://dx.doi.org/10.1016/0953-5438(92
http://dx.doi.org/10.1016/0953-5438(92

Last update: 12.02.2018 15:39 lehre:ss17:itt:undo https://wiki.mi.ur.de/lehre/ss17/itt/undo?rev=1518449949

memento object of the current state and only then applying the action
o to undo the action, the memento object is given to the originator

* see also: (Wikipedia article)

Implementation 2: Command Pattern

remember each operation
General idea:
o every action is encapsulated in a command object
o the command object has specific do() and undo () methods
o to apply an action, do () is called, to revert it, undo () is called
o an undo stack organizes the sequence of commands
similar: diff and patch utilities for code development
see also: (Wikipedia article)
see also: undo branches, e.g. in vim

Qt Implementation

e Qt's Undo framework implements the Command pattern.
¢ QUndoCommand (undo-able actions implemented as subclasses)
o undo() - undoes the action
o redo() - executes / redoes the action
e QUndoStack (maintains list of actions that can be undone)
o push(command) - adds to stack and calls command. redo()
o undo() - pops last command from stack and calls command.undo()
e QUndoGroup (route undo()/redo() to QUndoStacks for multiple opened documents)
e QUndoView (widget that shows a QUndoStack)
» also: facilities for undoing multiple related actions at once

Qt Undo Example (1/2)

~~~~ undo.py
#!/usr/bin/env python3
from PyQt5.QtWidgets import QUndoCommand, QUndoStack, QUndoGroup

class SimpleDocument(object):
def init (self, text=None):
if text is None:
self.text = ""
else:
self.text = text

class InsertCharacter(QUndoCommand) :
def init (self, document, position, character):
super(). init ()

https://wiki.mi.ur.de/ Printed on 30.04.2024 04:50


https://en.wikipedia.org/wiki/Memento_pattern
https://en.wikipedia.org/wiki/Command_pattern
http://vim.wikia.com/wiki/Using_undo_branches
http://doc.qt.io/qt-5/qundo.html

30.04.2024 04:50 5/6 Undo

self.document = document
self.character = character
self.position = position
self.setText("insert a character")
def undo(self):
self.document. text

self.document.text[:self.position] \
+ self.document.text[self.position+1:]
def redo(self):
self.document. text self.document.text[:self.position] \
self.character \

self.document.text[self.position:]

+ + 1

Qt Undo Example (2/2)

~~~~ undo.py

if name_ == " main_ ":
stack = QUndoStack()
d = SimpleDocument("123456")
stack.push(InsertCharacter(d, 1, "a"))

"1la23456"
stack.push(InsertCharacter(d, 3, "b"))
"la2b3456"

stack.undo()
stack.undo()
"123456"

~———~

Recap

* Undo is an essential interaction technique in modern user interfaces.

e When should one use the Memento pattern, when the Command pattern?
e Qt: command pattern

e see also: C# examples for Command and Memento Pattern

ENDE

From:
https://wiki.mi.ur.de/ - MI Wiki

Permanent link:
https://wiki.mi.ur.de/lehre/ss17/itt/undo?rev=1518449949

Last update: 12.02.2018 15:39

MI Wiki - https://wiki.mi.ur.de/

http://www.codeproject.com/Articles/33371/Multilevel-Undo-and-Redo-Implementation-in-C-Part
https://wiki.mi.ur.de/
https://wiki.mi.ur.de/lehre/ss17/itt/undo?rev=1518449949

Last update: 12.02.2018 15:39 lehre:ss17:itt:undo https://wiki.mi.ur.de/lehre/ss17/itt/undo?rev=1518449949

https://wiki.mi.ur.de/ Printed on 30.04.2024 04:50

	Undo
	Overview
	Overview
	Undo
	History
	Shortcuts
	Linear Multi-Level Undo Model
	Important details
	Preserving the complete command history
	Selective undo
	Multi-user undo

	Practical Implementations
	Implementation 1: Memento Pattern
	Implementation 2: Command Pattern
	Qt Implementation
	Qt Undo Example (1/2)
	Qt Undo Example (2/2)
	Recap

	ENDE

